Safety of direct acting antivirals (DAA) to cure hepatitis C virus (HCV) in pregnancy
And prevent VERTical transmission to the infant: HCVAVERT

Lizzie Chappell, on behalf of the HCVAVERT trial team

Email: e.chappell@ucl.ac.uk

*Proposal submitted to UKRI Applied Global Health Research
Risks and benefits of DAAs in pregnancy

(1) Cure the mother
(2) Prevent vertical transmission
(3) Adverse infant outcomes (birth defects, prematurity etc)

Hypothesis: Safety outcomes of DAA treatment of pregnant women with SOF/VEL during late 2nd/3rd trimester are non-inferior to current standard of care of no treatment of HCV during pregnancy. DAA treatment during pregnancy will prevent vertical transmission of HCV and cure the mother.
Phase II/III open-label 2 arm RCT

HCV PCR+ pregnant women randomised (2:1) at ≥24w gestation

A: Start SOF/VEL at ≥24wks gestation and before start of labour

B: No HCV treatment in pregnancy

Stratification by gestational age at enrolment (</≥35 weeks), country and HIV status

Follow up to birth for primary outcome and 6 months post-partum for secondary outcomes

PK curve in pregnancy

PK curve postpartum (BF)

Total sample size: n=510, of whom n=460 expected to present <35w
Primary and key secondary outcomes

Primary outcome (at birth)
• Congenital abnormalities
• Pre-term (≤37 weeks gestation)
• Pregnancy loss >24 weeks gestation
• Low birth weight (<2.5kg)

→ Non-inferiority of DAAs vs. no treatment in pregnancy
→ Primary analysis population: Women enrolled <35w gestation

Key secondary outcome (at 6 months post-partum)
• Vertical transmission i.e. proportion of infants who have a positive HCV RNA result by 6 months post-partum
Other secondary outcomes

- Maternal HCV cure (SVR12)
- Maternal and infant SAEs and grade 3 and 4 AEs
- All identified congenital abnormalities
- Infant growth and development
- Duration of breastfeeding
- Maternal quality of life
- Intervention arm: acceptability and adherence
Key inclusion criteria

- Pregnant ≥24 weeks gestation, not in labour
- ≥1 detectable HCV RNA within 60 days prior to enrolment
- HIV-, or if HIV+ then on ART compatible with SOF/VEL
- HBsAg-, or if HBsAg+, assessed for HBV viral load and HBV antiviral therapy
- Informed consent
Study sites

Pakistan
• Aga Khan University Hospital, Stadium Road, Karachi
• Aga Khan Maternal and Child Care Center, Hyderabad
• Liaquat University of Medical and Health Sciences (LUMHS), Hyderabad
• Sheikh Zayed Hospital, Rahim Yar Khan

Ukraine
• ASTAR Medical Center, Lviv
• AIRMED Clinic, Odessa
• Kyiv City Centre of Reproductive and Perinatal Medicine

India
• PGIMER, Chandigarh
• Lady Hardinge Medical College (LHMC), Delhi
Substudies

- PK in 16 women
 - Pharmacokinetic curves in pregnancy, labour, breastfeeding
- Cost and cost-effectiveness
- Timing of vertical transmission
Need for an RCT on DAA use in pregnancy

• Recruitment across a range of setting with heterogeneous HCV epidemics → increase generalisability of results

• Control group important to distinguish impact of DAAs in pregnancy from consequences of HCV in pregnancy; randomised design reduces selection bias

• Large sample size will increase detection of adverse events

• Potential impact: contribute to international guidelines, move towards quadruple elimination of vertical transmission, increase choice for pregnant and breastfeeding women living with HCV in both HIC and LMIC
HCVAVERT trial team

Pakistan:
The Aga Khan University: Saeed Hamid, Nida Najmi, Kamran Sadiq, Sajid Soofi, Shabina Ariff
Liaquat University of Medical & Health Sciences (LUHMS): Raheel Sikander
Sheikh Zayed Medical College & Hospital: Saima Zulfiqar

Ukraine:
Kyiv City Centre of Reproductive and Perinatal Medicine/Shupyk National Medical Academy: Alla Volokha
Odessa National Medical University: Svetlana Posokhova
Lviv Regional Children’s Hospital: Marta Vasylyev

India:
Postgraduate Institute of Medical Education & Research (PGIMER): Rashmi Bagga, Praveen Kumar, Vanita Jain, Mini Singh, Madhumita Premkumar
Lady Hardinge Medical College: Reena Yadav, Sharda Patra, Praveen Kumar

UK:
MRC Clinical Trials Unit at UCL: Ali Judd, Debbie Ford, Sarah Pett, Di Gibb, Jeannie Collins, Lizzie Chappell
University of Bristol (transmission modelling): Tony Ades
Imperial College London: Graham Cooke

France:
INSERM (health economics): Sylvie Deuffic-Burban

Netherlands:
PANNA (pharmacokinetics): Angela Colbers

Italy:
Penta Foundation: Carlo Giaquinto
University of Florence: Giuseppe Indolfi

PPI Partners: SALUS, Positive Women, The Health Foundation, CHAI, TAG, i-Base, WAVE (EACS)
Supporting partners: WHO, Pakistan MoH, UNICEF, CGHE
Pharmaceutical: Mylan (Viatris), Gilead