IMmunization to Protect African Children from Transmission of Hepatitis B (IMPACT-B study)

Dr Shevanthi Nayagam, Imperial College London
on behalf of IMPACT-B study team
2nd August 2022
Background

- WHO elimination targets aim for <0.1% HBsAg prevalence in children by 2030

- Current 5 year old HBsAg prevalence is 2.5% in Africa

- HBV mother-to-child transmission (MTCT) is now the major mode of residual HBV transmission

- In the African region, coverage of HBV MTCT interventions is low

Nayagam et al, Lancet Infectious Diseases 2016
Low coverage of HepB-BD in Africa

- Challenges to timely HepB-BD including:
 - Difficult to administer in rural settings or where out-of-facility births are high
 - Lack of funding support
 - Lack of awareness about importance of HepB-BD

- Most data on HepB-BD effectiveness is from Asia & North America
 - In Africa, one controlled study Ekra et al (HepB-BD and HepB3 groups)
 - no significant difference in MTCT rates overall
 - high rates of failure amongst HBeAg positive mothers

Polaris Observatory Collaborators, Lancet Gastro Hep 2018
Impact of HepB-BD scale-up

Global 5-year-old prevalence

HBV-related deaths averted by region

➢ HepB-BD scale-up to WHO 90% coverage levels could avert 500,000 HBV-related deaths in Africa (for 2020-2030 birth cohorts).

De Villiers et al, Nature Comms 2021
IMPACT-B study

IMmunization to Protect African Children from Transmission of Hepatitis B
Multi-centre: Senegal, The Gambia, Ethiopia
Duration: 30 months

• Overall study aims
 – To furnish important data gaps in Africa on effectiveness of timely HepB-BD stratified by HBeAg/HBV viral load status.
 – To allow better quantification of the impact of scaling up HepB-BD and therefore guide policies on HepB-BD introduction and scale-up in the region.
IMPACT-B Study Team

• Institute for Health Research Epidemiological Surveillance and Training, Senegal
 — Professor Coumba Toure Kane
 — Dr Gora Lo

• University of Cheikh Anta Diop, Senegal
 — Professor Adama Faye
 — Professor Abou Ba

• MRC Unit The Gambia, The Gambia
 — Dr Gibril Ndow
 — Professor Umberto D’Alessandro

• Institute Pasteur, France
 — Dr Yusuke Shimakawa

• University of Addis Ababa & St Paul’s Hospital, Ethiopia
 — Dr Hailemichael Desalegn
 — Dr Nega Berhe

• Imperial College London, UK
 — Dr Shevanthi Nayagam
 — Professor Maud Lemoine
 — Professor Tim Hallett

• Coalition for Global Health Elimination, USA
 — Dr John Ward
 — Dr Henry Njuguana

• University of Oslo, Norway
 — Dr Asgeir Johannessen
Overall study approach

Comparison of HBV MTCT risk in children (at 9 months of age) born to HBsAg positive mothers who receive timely HepB-BD and those who do not.

- **West Africa (Senegal + The Gambia)**
 - Comparison of outcomes in children who receive HepB-BD and those who don’t as part of **routine immunization policy**
 - **Prospective** methodology

- **East Africa (Ethiopia)**
 - Comparison of outcomes in children born in MoH HepB-BD **pilot sites vs non pilot** ‘control’ sites
 - **Retrospective** methodology
Primary Research Objectives

To evaluate the effectiveness of timely HepB-BD

- with respect to maternal HBsAg status (*i.e.* overall effectiveness)

- with respect to key indicators for increased transmission risk: maternal HBeAg status and level of HBV DNA
Secondary Research Objectives

- To assess the proportion of pregnant women at high risk of HBV MTCT in the study countries (defined as positive HBeAg and/or HBV DNA ≥200,000 IU/ml)

- To estimate the absolute risk of HBV MTCT with and without TBD
 - amongst babies born to HBsAg positive mothers (overall)
 - with respect to maternal HBeAg status and level of HBV DNA.

- To determine the proportion of infants that receive a) TBD vaccination (ie within 24 hours of birth) and b) complete hepatitis B vaccination series, and evaluate factors related to newborns and infants not receiving TBD and infant vaccination.
Study methodology

West Africa

- **Pregnant women attending antenatal services in selected study sites**
 - Antenatal services
 - **n = 8500 pregnant women in each study country**
 - HBV birth dose vaccination (in addition to routine infant vaccination as part of national policy)
 - HBsAg rapid Point-of-Care test (result given on site)
 - Positive Test
 - Sociodemographic information
 - Serum + DBS (for HBeAg serology and HBV DNA to be done retrospectively)
 - Negative Test
 - HBV birth dose vaccination (in addition to routine infant vaccination as part of national policy)
 - Infants aged 9 months:
 - Dried Blood Spot for HBeAg serology
 - Review of vaccination records & structured questionnaires

Ethiopia

- **Women giving birth at selected sites**
 - "Pilot Hospital" where HepB-BD is routine
 - HBV positive mothers traced postpartum and invited for testing
 - N=130
 - Infants tested with HBsAg
 - Mothers tested with HBV DNA, HBeAg and genotype
 - MTCT risk calculated:
 - (infected infants) / (HBV positive mothers)
 - Effect estimate of HepB-BD
 - $1 - (\text{MTCT risk with HepB-BD} / \text{MTCT risk without HepB-BD})$
 - "Control Hospital" where HepB-BD is NOT routine
 - HBV positive mothers traced postpartum and invited for testing
 - N=130
 - Infants tested with HBsAg
 - Mothers tested with HBV DNA, HBeAg and genotype

Ethiopia sample size = 260 HBsAg +ve mothers
i) MTCT risk at age of 9 months will be determined for each of the following groups based on whether they received TBD or not and HBeAg/HBV VL status of mother

<table>
<thead>
<tr>
<th>TBD and HBeAg status</th>
<th>TBD and Viral load status*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A = no TBD, HBeAg +ve</td>
<td>Group 1 = no TBD, High VL</td>
</tr>
<tr>
<td>Group B = no TBD, HBeAg –ve</td>
<td>Group 2 = no TBD, Low VL</td>
</tr>
<tr>
<td>Group C = TBD, HBeAg +ve</td>
<td>Group 3 = TBD, High VL</td>
</tr>
<tr>
<td>Group D = TBD, HBeAg-ve</td>
<td>Group 4 = TBD, Low VL</td>
</tr>
</tbody>
</table>

ii) Effectiveness of HepB-BD will be determined as follows

Overall Effectiveness (all HBsAg positive women)	= Group A&B vs Group C&D
Effectiveness in HBeAg positive women	= Group A vs Group C
Effectiveness in HBeAg negative women	= Group B vs Group D
Effectiveness in High VL women	= Group 1 vs Group 3
Effectiveness in Low VL women	= Group 2 vs Group 4
Summary

• Reducing HBV MTCT is an urgent public health priority globally and in Africa

• Narrow window of opportunity to answer an important question of HepB-BD effectiveness in Africa

• We hope that this collaborative study could contribute to increasing the evidence base and inform decisions about HepB-BD scale-up in the region