HEPATITIS D VIRUS-RELATED ACTIVITIES AT CDC: CURRENT AND UNDER CONSIDERATION

EYASU TESHALE, MD

DIVISION OF VIRAL HEPATITIS
CENTERS FOR DISEASE CONTROL AND PREVENTION, ATLANTA, GA

The findings and conclusions in this report are those of the author and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

eteshale@cdc.gov
Viral hepatitis surveillance in the United States

- Infections under surveillance by the CDC include hepatitis A, hepatitis B (acute, chronic, and perinatal), and hepatitis C (acute, chronic, and perinatal).

- Each state and territory mandates the conditions and diseases that should be reported to HDs when identified by laboratories, health care providers, and health care facilities.

- Health departments then notify CDC of cases of conditions that are included on the Nationally Notifiable Condition (NNC) List.

- The NNC List is established through a collaboration between CSTE and CDC and is based on:
 - Conditions for which there is mandatory reporting to health departments,
 - Laboratory tests approved by the US Food and Drug Administration, and
 - Established CDC/CSTE case definitions.

- Hepatitis D is not a nationally notifiable condition.
Anti-HDV Positivity in the US General Population, NHANES, 1999-2018

<table>
<thead>
<tr>
<th>NHANES year</th>
<th>Anti-HBc tested</th>
<th>Anti-HBc positive</th>
<th>HBsAg positive</th>
<th>Anti-HDV positive***</th>
<th>Assay type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999–2000</td>
<td>7121</td>
<td>339</td>
<td>17</td>
<td>3 (18)</td>
<td>*</td>
</tr>
<tr>
<td>2001–2002</td>
<td>7950</td>
<td>355</td>
<td>13</td>
<td>1 (8)</td>
<td>*</td>
</tr>
<tr>
<td>2003–2004</td>
<td>7385</td>
<td>359</td>
<td>28</td>
<td>1 (4)</td>
<td>*</td>
</tr>
<tr>
<td>2005–2006</td>
<td>7393</td>
<td>327</td>
<td>22</td>
<td>0</td>
<td>*</td>
</tr>
<tr>
<td>2007–2008</td>
<td>7410</td>
<td>352</td>
<td>15</td>
<td>0</td>
<td>**</td>
</tr>
<tr>
<td>2009–2010</td>
<td>7885</td>
<td>366</td>
<td>30</td>
<td>0</td>
<td>**</td>
</tr>
<tr>
<td>2011–2012</td>
<td>7066</td>
<td>468</td>
<td>43</td>
<td>5 (12)</td>
<td>**</td>
</tr>
<tr>
<td>2013–2014</td>
<td>7656</td>
<td>437</td>
<td>38</td>
<td>19 (50)</td>
<td>**</td>
</tr>
<tr>
<td>2015–2016</td>
<td>7124</td>
<td>448</td>
<td>33</td>
<td>19 (58)</td>
<td>**</td>
</tr>
<tr>
<td>2017–2018</td>
<td>7001</td>
<td>414</td>
<td>29</td>
<td>6 (21)</td>
<td>**</td>
</tr>
</tbody>
</table>

Explanation for high positivity rate
- NHANES oversamples certain populations at higher risk for HBV infection
 - Populations at risk for HDV infection, e.g., immigrants
- NHANES sites change every cycle
- Impact of small number of samples tested for anti-HDV
 - Unweighted number of HBsAg positive fluctuated
 - Unweighted number of HDV positive returned to very low
- Assay was used in previous studies

International Immunodiagnostics HDV Ab assay, a competitive enzyme immunoassay

DiaSorin ETI-AB-DELTAK-2 enzyme immunoassay

Among HBsAg + participants

#unweighted
Patients with Chronic Hepatitis B Tested for HDV Infection, the CHeCS Cohort, 2006-2018

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Tested for anti-HDV (N=416)</th>
<th>Anti-HDV result</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>Positive (n=20) n (%)</td>
<td>Negative (n=396) n (%)</td>
</tr>
<tr>
<td>Age category</td>
<td>N (%)</td>
<td>Positive (n=20) n (%)</td>
<td>Negative (n=396) n (%)</td>
</tr>
<tr>
<td>18-29</td>
<td>11 (2.6)</td>
<td>5 (25.0)</td>
<td>11 (2.8)</td>
</tr>
<tr>
<td>30-44</td>
<td>93 (22.4)</td>
<td>6 (30.0)</td>
<td>88 (22.2)</td>
</tr>
<tr>
<td>45-59</td>
<td>151 (36.3)</td>
<td>6 (30.0)</td>
<td>145 (36.6)</td>
</tr>
<tr>
<td>60-74</td>
<td>136 (32.7)</td>
<td>7 (35.0)</td>
<td>129 (32.6)</td>
</tr>
<tr>
<td>75+</td>
<td>25 (6.0)</td>
<td>2 (10.0)</td>
<td>23 (5.8)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>139 (33.4)</td>
<td>7 (35.0)</td>
<td>132 (33.3)</td>
</tr>
<tr>
<td>Male</td>
<td>277 (66.6)</td>
<td>13 (65.0)</td>
<td>264 (66.7)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>115 (27.8)</td>
<td>9 (45.0)</td>
<td>106 (27.0)</td>
</tr>
<tr>
<td>Black</td>
<td>133 (32.2)</td>
<td>8 (40.0)</td>
<td>125 (31.8)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>4 (1.0)</td>
<td>4 (1.0)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>90 (21.8)</td>
<td>1 (5.0)</td>
<td>89 (22.6)</td>
</tr>
<tr>
<td>Hawaiian/PI</td>
<td>5 (1.2)</td>
<td>5 (1.3)</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic-Unknown</td>
<td>66 (16.0)</td>
<td>2 (10.0)</td>
<td>64 (16.3)</td>
</tr>
</tbody>
</table>

- Total number of persons with chronic hepatitis B = 6313
- Total number tested for HDV = 416 (6.6%)
- Total number positive for anti-HDV = 20 (4.8%)
- No risk factor information available

Preliminary analysis—CHeCS investigation team
HDV Positivity of HBsAg Positive Samples Tested in a Commercial Laboratory, 2014-2017

<table>
<thead>
<tr>
<th>YEAR</th>
<th>HDV Ab+</th>
<th>Total HDV tested*</th>
<th>% HDV +</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>35</td>
<td>2302</td>
<td>1.5</td>
</tr>
<tr>
<td>2015</td>
<td>46</td>
<td>3451</td>
<td>1.3</td>
</tr>
<tr>
<td>2016</td>
<td>81</td>
<td>3886</td>
<td>2.1</td>
</tr>
<tr>
<td>2017</td>
<td>69</td>
<td>3995</td>
<td>1.7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>231</td>
<td>13634</td>
<td>1.7</td>
</tr>
</tbody>
</table>

- Median age 53 years
- 37% were female and 63% were male
- Collectively, ten states accounted for 80% of the patients.
- Twenty-six states and DC were represented at least once.
- 45% of requests from hospitals and nearly 10% from other clinical laboratories.
- Overall, gastroenterologists represented 16% and internal medicine approximately 8%
- Limitations:
 - Missing clinical info/indication for HDV testing
 - Reason for testing unknown

*Unique (de-identified) HBsAg positive

Dr. Kaufman, Quest diagnostics
ANTI-HDV AND GENOTYPE OF SAMPLES REFERRED TO CDC VIRAL HEPATITIS REFERENCE LAB (2012-2018)

All samples in this study were sent to CDC for HDV RNA testing as potentially HDV infected
- Severe symptoms
- Some tested for anti-HDV prior to sending to us
- Samples from: Pennsylvania, California, New York, Texas, Utah, and Iowa

Testing at CDC:
- HBsAg (Vitros)
- Anti-HDV (ETI-AB-DELTAK-2) used until discontinued (In-house anti-HDV IgG test was developed and validated)
- Quantitative HDV RNA (in-house)

Genotype distribution:(N=26)
- 17 (65%) genotype 1
- 1 (4%) genotype 3
- 8 (31%) genotype 5

Unpublished data, viral hepatitis reference lab
SUMMARY

• Prevalence of infection and burden of disease is unknown
 • Studies are mainly based on small population and serologic tests
• Limited data indicate low prevalence of HDV infection
 • Not generalizable to the overall HBV infected population
• HDV testing is under-employed in the United States
 • There is no FDA-approved HDV test
 • Limited awareness and risk-based screening guidance for HDV testing
Strategies for the Elimination of HDV Infection in the United States

- Increase vaccination coverage among persons at risk
 - Universal adult hepatitis B vaccination recommendations are under consideration
- Increase linkage to care or engagement in care
 - Identification of HBV infected persons in the United States
 - Only one third of HBV infected persons are aware of their infection status
- CDC recommended HDV testing at initial evaluation of patients with HBV infection
 https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5708a1.htm
- Update screening recommendations for detection of HBV infection
 - New CDC Hepatitis B screening recommendations in 2022
 - Universal HBsAg screening of adults in the US general population for CHB is cost-effective and likely cost-saving compared to current CHB screening recommendations

ACKNOWLEDGEMENTS

• Providing data, reviewing slides
 • Philip Spradling
 • Anne Moorman
 • Yuna Zhong
 • Danae Bixler
 • Martha Montgomery
 • Megan Hofmeister
 • Laurie Barker
 • Nicola Thompson
 • William Thompson
 • Noele Nelson
 • Erin Conners
 • Ademola Osinubi
 • Carolyn Wester
 • Saleem Kamili
 • Tonya Hayden
 • Maja Kodani
 • Jan Drobeniuc

• Providing data, reviewing slides
 • Paul Wasuwanich
 • Wikrom Karnsul
 • Harvey Kaufman
 • Weber William
 • Lora Rupp
 • CHeCS collaborators

Thank you!